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Abstract. The coefficient of thermal expansion of the Si–O bond has been obtained from neutron
total scattering measurements of five different phases of silica, with value (2.2 ± 0.4)× 10−6 K−1.
This value is smaller than values obtained by conventional x-ray diffraction measurements corrected
for rigid-body thermal motion. Three of the datasets used in this study, tridymite and two zeolite
structures, are completely new.

The Si–O bond is one of the most important chemical bonds in the physical sciences, playing
an important role in many technologically important ceramics (silicate glasses, quartz), in
chemistry (zeolites), and in geology (silicate rocks and minerals). In spite of this, there is little
information about how the bond responds to changes in external variables such as temperature.
This is not surprising given that the conventional technique for measuring structure, Bragg
diffraction using x-ray or neutron radiation, does not measure bond lengths directly. The
information that can be extracted from the Bragg peaks concerns the positions of atoms. The
best that can be done is to associate interatomic distances with the distances between average
positions, and this is only appropriate if there is no correlation between the instantaneous
positions of atoms. The problem with trying to determine the Si–O distance using Bragg
diffraction is that the fluctuations in the positions of the Si and O atoms are highly correlated.
We will argue in this letter that total scattering is far better as a method for determining bond
lengths. Recent measurements, augmented by new measurements reported in this letter, of the
Si–O bond lengths at various temperatures in several different phases of silica has given us the
unique opportunity to determine a general value for the coefficient of thermal expansion of the
Si–O bond; this has not been attempted before.

In conventional x-ray or neutron diffraction analysis the distribution of atom positions is
represented by a set of three-dimensional elliptical Gaussian functions. Conventionally, the
centres of the ellipses are associated with the mean positions of the atoms, and the widths of the
ellipses are associated with the amplitudes of the thermal motion. If the motions of the atoms
give more complex shapes of the distributions of position, this analysis is not appropriate.
This problem has been recognised for a long time. In the case of molecular solids, where
molecules may be assumed to move as rigid objects, the distribution of the positions of the
atoms is often represented by the TLS formalism. In this, the temperature factors are defined
in a form that reflects the rigid body translations (T), librations (L) and coupled motion (S) of
the molecule [1].
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Figure 1. Temperature dependence of the distance between the positions of neighbouring Si and
O atoms as determined by Rietveld refinement of the crystal structure of quartz (filled circles),
compared with the true Si–O bond length (filled squares) determined by neutron total scattering
measurements as discussed in this letter. The cartoon shows the origin of the shortening of the
distance between the mean positions of the atoms compared to the true bond length.

Even allowing for the possibility of a centre of an atomic distribution to be accurately
defined, if there are correlated motions of atoms, the distance between the mean positions
of two atoms does not necessarily approximate to the mean distance between atoms. This
is particularly problematic in a material containing Si–O bonds. Usually, at least at ambient
pressures, silicon atoms are bonded to four oxygen atoms to form regular SiO4 tetrahedra.
Neighbouring tetrahedra are often linked at corners, with oxygen atoms bonded to two silicon
atoms. This is the situation in pure silica, SiO2, in the crystalline or amorphous phases. The
Si–O bond is particularly strong, and thermal motions of the oxygen atoms are primarily
determined by rigid body motions of the SiO4 tetrahedra rather than by thermal vibrations of
the Si–O bonds. The scale of the problem of determining the true bond length is shown in
figure 1, where we show recent data for quartz [2]. The distance between the mean positions
of bonded silicon and oxygen atoms, as determined by Rietveld refinement of neutron powder
diffraction data, is seen to fall on heating, whereas the true value of the bond length, determined
from neutron total scattering using methods discussed below, increases on heating. This point
is illustrated by the cartoon in figure 1. The detailed temperature dependence of the distance
between the mean positions is determined by the existence of the displacive phase transition at
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846 K. Downs et al [3] have used a TLS approach to analyse the thermal motion in a range of
crystalline silicates. Analysis of a wide range of data suggested that the coefficient of thermal
expansion of the Si–O bond length varies between 0–12 × 10−6 K−1.

However, there is also the problem of resolution. The real resolution of a diffraction
experiment is set by the maximum value of the scattering vector, Qmax (Q = 4π sin θ/λ in a
diffraction experiment with radiation of wavelength λ and scattering angle 2θ ). The resolution
in real space is 	r = 2π/Qmax. For an experiment with a conventional Cu Kα source of
x-rays, λ = 1.54 Å, if measurements can be performed to a maximum value of θ of 90◦, the
real-space resolution is λ/2 = 0.77 Å. At this level of resolution, it is very hard to obtain
unambiguous information about the complex shape of the distribution of atomic positions,
but by the judicious use of constraints, it is possible to overcome the apparent limitations of
this resolution to some extent. Moreover, the problems of resolution need not always be too
severe, since if the distribution of positions or bond lengths is actually a symmetric function,
it is possible to find the mid-point of the symmetric function to an accuracy that is much better
than the resolution limit. However, if the distribution is not a symmetric function, the limited
resolution will make it very hard to notice this, and the mid-point of the distribution determined
by the analysis may not be the true mid-point. Herein lie the problems in determining the true
thermal expansion of the Si–O bond!

In fact, the best way to determine true bond lengths is not by accurate measurements and
sophisticated analysis of Bragg intensities, but by a measurement of the total scattering, Bragg
+ diffuse scattering (for pure silica incoherent scattering is negligibly weak). In the course of a
study of the structure of disordered materials using neutron total scattering measurements from
polycrystalline samples, we have obtained data on various crystalline silica phases over a range
of temperatures. Our data include very recent measurements on quartz at 13 temperatures (20–
1073 K) [2] and cristobalite at five temperatures (473–948 K) [4], and new data for tridymite
at four temperatures (563–823 K) and silica in zeolite-Y and zeolite-ZSM5 structures at two
temperatures (300 and 673 K) each. From this collection of data we have been able to determine
the true temperature-dependence of the Si–O bond.

The intensity of the total scattering, whether using x-ray or neutron beams, contains
information about the mean distances between atoms. This property has been exploited in the
study of the structures of glasses and fluids. For isotropic materials, whether a fluid, glass or
polycrystalline material, the intensity of the scattered beam at a given value of the scattering
vector is given in terms of the individual pair distribution functions gij (r):
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where the summations are over all atom types, ρ0 is the average number density, cj and bj

are the proportion and scattering length of atom type j respectively. F(Q) is extracted from
the measured scattering cross section by applying standard corrections (including the Placzek
correction) as described by Wright [5,6]. We obtain G(r) from F(Q) using the inverse method
developed by Pusztai and McGreevy [7]. We also define the function
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T (r) = 4πrρ0
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)2]

which we use to determine the Si–O bond length because peaks in T (r) correspond to the
actual distribution of bond lengths [5, 6]. These peaks are usually closely approximated by a
Gaussian function, with widths that correspond to the mean squared amplitude of the vibrations
of the bonds. Although the use of total neutron scattering within this formalism is not often
applied to the study of crystalline materials, the methodology is equally applicable to crystals
as to fluids and glasses, and because it is well-founded in studies of the latter materials its
application to crystalline materials is robust.
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Figure 2. Some examples of F(Q) and T (r) data for tridymite and the two zeolite structures. The
peaks in the T (r) functions at around 1.6 Å correspond to the Si–O bonds. These peaks give the
ripples in F(Q) at high Q.

The experiments were performed on the LAD time-of-flight diffractometer at the ISIS
pulsed neutron source [8]. Data were obtained to a value of Qmax = 50 Å−1, which allow a
real-space resolution of 0.13 Å. F(Q) and T (r) for quartz and cristobalite are given in earlier
papers [2, 4, 9, 10]. Some of the new data for tridymite and the zeolites are shown figure 2.

The first peak in T (r) corresponds to the Si–O bond, and its mid-point gives the mean value
of the bond length. We extracted the mean value of the bond length from all measurements of
T (r) on the suite of silica phases. We then fitted the results for the temperature-dependence
of the extracted Si–O bond lengths using an overall linear coefficient of thermal expansion,
allowing the value of the bond length at 0 K to be different for each sample. The variation of
the bond length with temperature was too small to allow non-linear expansion, particularly at
low temperature, to be taken into account. The fitted coefficient of thermal expansion of the
Si–O bond, �, has the value α = �−1∂�/∂T = (2.2 ± 0.4)× 10−6 K−1 (fitting χ2 = 1.3). The
fitted 0 K values of the bond lengths were 1.611(2) Å for quartz, 1.610(1) Å for cristobalite,
1.614(1) Å for tridymite, 1.6113(6) Å for zeolite-Y, and 1.6079(2) Å for zeolite-ZSM5. These
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Figure 3. Temperature dependence of the Si–O bond length determined by neutron total scattering
measurements for several different phases of silica. The straight line is a least-squares fit to the
data.

results are close to the room temperature value of 1.608(4) Å obtained for amorphous silica
by neutron total scattering measurements as reported by Wright [5,6]. We have subtracted an
offset from the bond length values of the different data sets so that the 0 K values coincide with
that of quartz (i.e. 1.610 − 1.611 = −0.001 was subtracted from the cristobalite data, 0.003
was subtracted from the tridymite data and −0.0032 was subtracted from the zeolite-ZSM5
data, with no offset needed for the zeolite-Y data). This has been done in order to put all the
data onto a common scale to show the variation with temperature in figure 3. The scatter of
points in figure 3 appears to be relatively large, but the size of the scatter is well within the
resolution calculated by Qmax. In fact the scatter only appears to be large because the thermal
expansion is so small, and the range on the vertical scale is small. The errors on the individual
data points are quite reasonable for this type of measurement. The largest discrepancy is
for quartz at 20 K, and this data point was excluded from the fitting because of the bias it
produced. We believe that this is appropriate because the Si–O distances obtained from the
Rietveld refinements should become very close to the distances from T (r) at low temperatures
as the thermal motion is greatly reduced (this is validated by the data in figure 1), and the
Si–O distance from the Rietveld refinement at 20 K actually lies very close to the fitted line in
figure 3. Moreover, reverse Monte Carlo simulation based on the total scattering data from 20
K also gave a mean Si–O distance that lies close to the fitted line [2].

It is worth making one comment concerning the difference between the apparent distance
between Si and O atoms from the Rietveld refinement and the actual bond length shown in
figure 1. At high temperatures, this difference (almost 0.3 Å) is rather larger that the resolution
given by Qmax (0.13 Å), and is therefore statistically significant.

The fitted value of the coefficient of thermal expansion can be compared with the results
from the TLS rigid body analysis of Downs et al [3] applied to crystal structure refinements
of various silicate phases using Bragg diffraction data. Our value of α = (2.2 ± 0.4) × 10−6

K−1 is at the low end of the range of values given by their analysis (up to 12 × 10−6 K−1).
Over a change in temperature of 1000 K, the length of the Si–O bond could increase by up to
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0.02 Å from the latter results. Although this change is within the experimental resolution, a
real change of this size would nevertheless have been seen in our data given in figure 3.

This is the first direct measurement of the temperature dependence of the Si–O bond in
solid materials, and the consistency of the data from one structure to another suggests that the
value of the coefficient of thermal expansion of the Si–O bond will differ little between different
structures. The thermal expansion is very low, rather lower than previous estimates based on
sophisticated corrections for thermal motion in crystal structure refinements. This knowledge
of the true thermal expansion of the Si–O bond should now facilitate quantitative studies of
the structures of disordered materials and of bulk thermal expansion of silicates [11, 12].

We are grateful to EPSRC for support and to Professor Michael Henderson (Manchester) and
Juergen Eckert (Los Alamos) for providing the tridymite sample and the two zeolite silica
samples, respectively.
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